第三題: (注: []裡邊是 subscript; ^之後個()係 superscript)
Let x[1]=y(x), x[2]=y`(x), x[3]=y``(x), ... , xn=y^(n-1)(x) equation 1
therefore,
x[2]=x[1]`, x[3]=x[2]`, x[4]=x[3]`, ... , x[n]=x[n-1]` equation 2
Any nth order differential equation for y(x) should be expressed in the following form:
a[0](x)d^(n)y/dx^(n)+a[1](x)d^(n-1)y/dx^(n-1) + ... + a[n](x)y = b(x) equation 3
By equation 1 & 2, equation 3 can be expressed in the following system,
dx[1]/dx = x[2]
dx[2]/dx = x[3]
.
.
.
dx[n-1]/dx = x[n]
a[0](x) dx[n]/dx = b(x) - a[1](x)x[n] - a[2](x)x[n-1] - ... - a[n](x)x[1]
It is a system of n first order linear differential equations in n unknowns.
(a) y^(n) + a[n-1]y^(n-1) + ... + a[0]y = 0
Similarly,
the system is:
dx[1]/dx = x[2]
dx[2]/dx = x[3]
.
.
.
dx[n-1]/dx = x[n]
dx[n]/dx = -a[n-1]x[n] - a[n-2]x[n-1] - ... - a[0]x[1]
(b) Matrix is:
-- -- -- -- -- --
|dx[1]/dx | |0 1 0 0 . . . 0| |x[1]|
|dx[2]/dx | |0 0 1 0 . . . 0| |x[2]|
|. | |0 0 0 1 0 . . 0| |x[3]|
|. &nbs